Cost-based Modeling and Evaluation for Data Mining With Application to Fraud and Intrusion Detection: Results from the JAM Project
نویسندگان
چکیده
In this paper we describe the results achieved using the JAM distributed data mining system for the real world problem of fraud detection in financial information systems. For this domain we provide clear evidence that state-of-the-art commercial This research is supported in part by grants from DARPA (F30602-96-1-0311) and NSF (IRI96-32225 and CDA-96-25374).
منابع مشابه
Cost-based Modeling for Fraud and Intrusion Detection: Results from the JAM Project
In this paper we describe the results achieved using the JAM distributed data mining system for the real world problem of fraud detection in financial information systems. For this domain we provide clear evidence that state-of-the-art commercial fraud detection systems can be substantially improved in stopping losses due to fraud by combining multiple models of fraudulent transaction shared am...
متن کاملCredit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملMEFUASN: A Helpful Method to Extract Features using Analyzing Social Network for Fraud Detection
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based o...
متن کاملJAM: Java Agents for Meta-Learning over Distributed Databases
In this paper, we describe the JAM system, a distributed, scalable and portable agent-based data mining system that employs a general approach to scaling data mining applications that we call meta-learning. JAM provides a set of learning programs, implemented either as JAVA applets or applications, that compute models over data stored locally at a site. JAM also provides a set of meta-learning ...
متن کامل